10 research outputs found

    A generalized matrix profile framework with support for contextual series analysis

    Get PDF
    The Matrix Profile is a state-of-the-art time series analysis technique that can be used for motif discovery, anomaly detection, segmentation and others, in various domains such as healthcare, robotics, and audio. Where recent techniques use the Matrix Profile as a preprocessing or modeling step, we believe there is unexplored potential in generalizing the approach. We derived a framework that focuses on the implicit distance matrix calculation. We present this framework as the Series Distance Matrix (SDM). In this framework, distance measures (SDM-generators) and distance processors (SDM-consumers) can be freely combined, allowing for more flexibility and easier experimentation. In SDM, the Matrix Profile is but one specific configuration. We also introduce the Contextual Matrix Profile (CMP) as a new SDM-consumer capable of discovering repeating patterns. The CMP provides intuitive visualizations for data analysis and can find anomalies that are not discords. We demonstrate this using two real world cases. The CMP is the first of a wide variety of new techniques for series analysis that fits within SDM and can complement the Matrix Profile

    A dynamic dashboarding application for fleet monitoring using semantic web of things technologies

    Get PDF
    In industry, dashboards are often used to monitor fleets of assets, such as trains, machines or buildings. In such industrial fleets, the vast amount of sensors evolves continuously, new sensor data exchange protocols and data formats are introduced, new visualization types may need to be introduced and existing dashboard visualizations may need to be updated in terms of displayed sensors. These requirements motivate the development of dynamic dashboarding applications. These, as opposed to fixed-structure dashboard applications, allow users to create visualizations at will and do not have hard-coded sensor bindings. The state-of-the-art in dynamic dashboarding does not cope well with the frequent additions and removals of sensors that must be monitored—these changes must still be configured in the implementation or at runtime by a user. Also, the user is presented with an overload of sensors, aggregations and visualizations to select from, which may sometimes even lead to the creation of dashboard widgets that do not make sense. In this paper, we present a dynamic dashboard that overcomes these problems. Sensors, visualizations and aggregations can be discovered automatically, since they are provided as RESTful Web Things on a Web Thing Model compliant gateway. The gateway also provides semantic annotations of the Web Things, describing what their abilities are. A semantic reasoner can derive visualization suggestions, given the Thing annotations, logic rules and a custom dashboard ontology. The resulting dashboarding application automatically presents the available sensors, visualizations and aggregations that can be used, without requiring sensor configuration, and assists the user in building dashboards that make sense. This way, the user can concentrate on interpreting the sensor data and detecting and solving operational problems early

    Scalable fleet monitoring and visualization for smart machine maintenance and industrial IoT applications

    Get PDF
    The wide adoption of smart machine maintenance in manufacturing is blocked by open challenges in the Industrial Internet of Things (IIoT) with regard to robustness, scalability and security. Solving these challenges is of uttermost importance to mission-critical industrial operations. Furthermore, effective application of predictive maintenance requires well-trained machine learning algorithms which on their turn require high volumes of reliable data. This paper addresses both challenges and presents the Smart Maintenance Living Lab, an open test and research platform that consists of a fleet of drivetrain systems for accelerated lifetime tests of rolling-element bearings, a scalable IoT middleware cloud platform for reliable data ingestion and persistence, and a dynamic dashboard application for fleet monitoring and visualization. Each individual component within the presented system is discussed and validated, demonstrating the feasibility of IIoT applications for smart machine maintenance. The resulting platform provides benchmark data for the improvement of machine learning algorithms, gives insights into the design, implementation and validation of a complete architecture for IIoT applications with specific requirements concerning robustness, scalability and security and therefore reduces the reticence in the industry to widely adopt these technologies

    FLAGS : a methodology for adaptive anomaly detection and root cause analysis on sensor data streams by fusing expert knowledge with machine learning

    Get PDF
    Anomalies and faults can be detected, and their causes verified, using both data-driven and knowledge-driven techniques. Data-driven techniques can adapt their internal functioning based on the raw input data but fail to explain the manifestation of any detection. Knowledge-driven techniques inherently deliver the cause of the faults that were detected but require too much human effort to set up. In this paper, we introduce FLAGS, the Fused-AI interpretabLe Anomaly Generation System, and combine both techniques in one methodology to overcome their limitations and optimize them based on limited user feedback. Semantic knowledge is incorporated in a machine learning technique to enhance expressivity. At the same time, feedback about the faults and anomalies that occurred is provided as input to increase adaptiveness using semantic rule mining methods. This new methodology is evaluated on a predictive maintenance case for trains. We show that our method reduces their downtime and provides more insight into frequently occurring problems. (C) 2020 The Authors. Published by Elsevier B.V

    Event-driven dashboarding and feedback for improved event detection in predictive maintenance applications

    No full text
    Manufacturers can plan predictive maintenance by remotely monitoring their assets. However, to extract the necessary insights from monitoring data, they often lack sufficiently large datasets that are labeled by human experts. We suggest combining knowledge-driven and unsupervised data-driven approaches to tackle this issue. Additionally, we present a dynamic dashboard that automatically visualizes detected events using semantic reasoning, assisting experts in the revision and correction of event labels. Captured label corrections are immediately fed back to the adaptive event detectors, improving their performance. To the best of our knowledge, we are the first to demonstrate the synergy of knowledge-driven detectors, data-driven detectors and automatic dashboards capturing feedback. This synergy allows a transition from detecting only unlabeled events, such as anomalies, at the start to detecting labeled events, such as faults, with meaningful descriptions. We demonstrate all work using a ventilation unit monitoring use case. This approach enables manufacturers to collect labeled data for refining event classification techniques with reduced human labeling effort

    A complete software stack for IoT time-series analysis that combines semantics and machine learning-lessons learned from the dyversify project

    No full text
    Companies are increasingly gathering and analyzing time-series data, driven by the rising number of IoT devices. Many works in literature describe analysis systems built using either data-driven or semantic (knowledge-driven) techniques. However, little to no works describe hybrid combinations of these two. Dyversify, a collaborative project between industry and academia, investigated how event and anomaly detection can be performed on time-series data in such a hybrid setting. We built a proof-of-concept analysis platform, using a microservice architecture to ensure scalability and fault-tolerance. The platform comprises time-series ingestion, long term storage, data semantification, event detection using data-driven and semantic techniques, dynamic visualization, and user feedback. In this work, we describe the system architecture of this hybrid analysis platform and give an overview of the different components and their interactions. As such, the main contribution of this work is an experience report with challenges faced and lessons learned

    Hierarchical pattern matching for anomaly detection in time series

    No full text
    As companies rely on an ever increasing number of connected devices for their day to day operations, a need arises for automated anomaly detectors to constantly observe crucial device metrics in real time to prevent downtime and data loss. As production environments tend to monitor a huge amount of these metrics, it prevents current state-of-the-art techniques to be deployed as the required computational resources is too high. This paper proposes a lightweight anomaly detection method that can be deployed in these environments without a reduction in accuracy. The approach works fully online, and does not require an extensive history set to be kept in memory. The method is benchmarked on the publicly available Numenta dataset, as well as a network monitoring dataset from different environments provided by a network management solution vendor. These benchmarks show the proposed technique to be very competitive with the current state-of-the-art and exceeding it in production applicability
    corecore